Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey.
نویسندگان
چکیده
The simple spike discharge of 231 cerebellar Purkinje cells in ipsilateral lobules V and VI was recorded in three monkeys trained to perform a visually guided reaching task requiring movements of different directions and distances. The discharge of 179 cells was significantly modulated during movement to one or more targets. Mean simple spike rate was fitted to a cosine function for direction tuning, a simple linear function for distance modulation, and a multiple linear regression model that included terms for direction, distance, and target position. On the basis of the fit to the direction and distance models, there were more distance-related than direction-related Purkinje cells. The simple spike discharge of most direction-related cells modulated at only one target distance. The preferred directions for the simple spike tuning were not uniformly distributed across the workspace. The discharge of most distance-related cells modulated along only one movement direction. On the basis of the multiple linear regression model, simple spike discharge was also correlated with target position, in addition to direction and distance. Approximately half of the Purkinje cells had simple spike activity associated with only a single parameter, and only a small fraction of the cells with all three. The multiple regression model was extended to evaluate the correlations as a function of time. Considerable overlap occurred in the timing of the simple spike correlations with the parameters. The latency for correlation with movement direction occurred mainly in a 500-ms interval centered on movement onset. The correlations with target position also occurred around movement onset, in the range of -200-500 ms. Distance correlations were more variable, with onset latencies from -500 to 1,000 ms. These results demonstrate that the simple spike discharge of cerebellar Purkinje cells is correlated with movement direction, distance, and target position. Comparing these results to motor cortical discharge shows that the correlations with these parameters were weaker in Purkinje cell simple spike discharge, and that, for the majority of Purkinje cells, the simple spike discharge was significantly related to only a single movement parameter. Other differences between simple spike responses and those of motor cortical cells include the nonuniform distribution of preferred directions and the extensive overlap in the timing of the correlations. These differences suggest that Purkinje cells process, encode, and use kinematic information differently than motor cortical neurons.
منابع مشابه
Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells
Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum's use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in...
متن کاملCerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking.
Pathophysiological, lesion, and electrophysiological studies suggest that the cerebellar cortex is important for controlling the direction and speed of movement. The relationship of cerebellar Purkinje cell discharge to the control of arm movement parameters, however, remains unclear. The goal of this study was to examine how movement direction and speed and their interaction-velocity-modulate ...
متن کاملChanges in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation.
The cerebellum is essential in motor learning. At the cellular level, changes occur in both the simple spike and complex spike firing of Purkinje cells. Because simple spike discharge reflects the main output of the cerebellar cortex, changes in simple spike firing likely reflect the contribution of the cerebellum to the adapted behavior. Therefore, we investigated in Rhesus monkeys how the rep...
متن کاملEncoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.
It is controversial whether simple-spike activity of cerebellar Purkinje cells during arm movements encodes movement kinematics like velocity or dynamics like muscle activities. To examine this issue, we trained monkeys to flex or extend the elbow by 45 degrees in 400 ms under resistive and assistive force fields but without altering kinematics. During the task movements after training, simple-...
متن کاملPurkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.
The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 1 شماره
صفحات -
تاریخ انتشار 1997